If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+23x+131=0
a = 1; b = 23; c = +131;
Δ = b2-4ac
Δ = 232-4·1·131
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{5}}{2*1}=\frac{-23-\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{5}}{2*1}=\frac{-23+\sqrt{5}}{2} $
| -8y=1.04 | | 12+7(9)=x | | 12+7•9=x | | 12+7x9=x | | -5y=3.75 | | C(x)=2x+30 | | x+1.7=6.1 | | 6+1/3(x-9)=1/2x(2-x) | | 7x-(12-(3x-4))=5x-(-(2x-2)-3) | | w/3+2=w/4 | | b^-7b-120=0 | | 65+3x=6x+5 | | x2-6x-9=0 | | b^2-7b-120=0 | | 7(X+2)=2x-10 | | 5^(x+2)=8.5 | | 3x-4-(2-x)=1 | | (2x+1)/3+3x=3 | | 3.75×n=67.50 | | z÷(3+z)=3 | | 9x+12=x+8 | | 1/4x+1/4=0 | | 4(x-12)+8=2x-5 | | 4(2x-1)=-12(0.5-x | | 2x-7+x+4=90 | | -7k+174=14k=69 | | x*0.25=321 | | -7k+147=14k+69 | | 9-(3y-5)=6-4y | | q2-3q=0 | | x*0.25=256 | | x*0.25=451 |